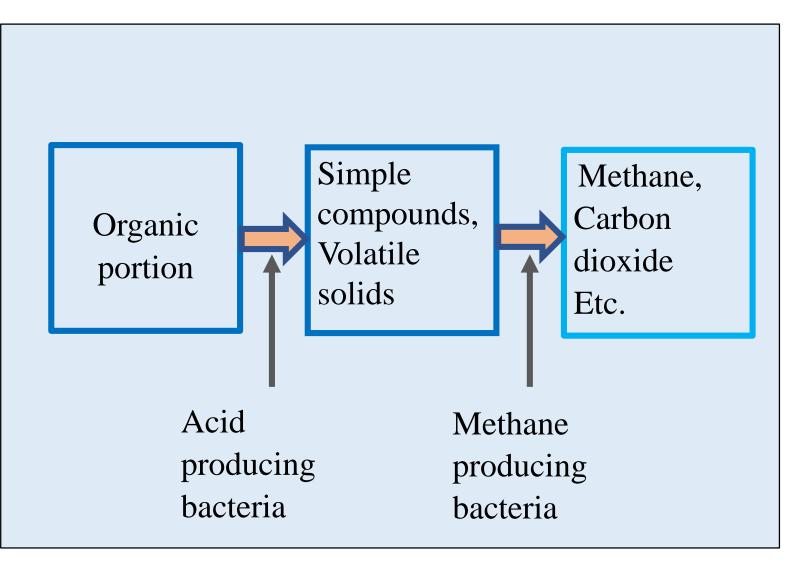
Bioenergy for Ghana Seminar Fiesta Royale Hotel, Accra, Ghana, 29-30th January 2018

Challenges of biogas production in the wet fraction in Ghana

Edem C. Bensah


Centre for RE & EE Kumasi Technical University

Outline

- Anaerobic digestion
- Nature of biogas industry in Ghana
- Major challenges of the biogas sector
- Case studies: successes and challenges
- Conclusion and way forward

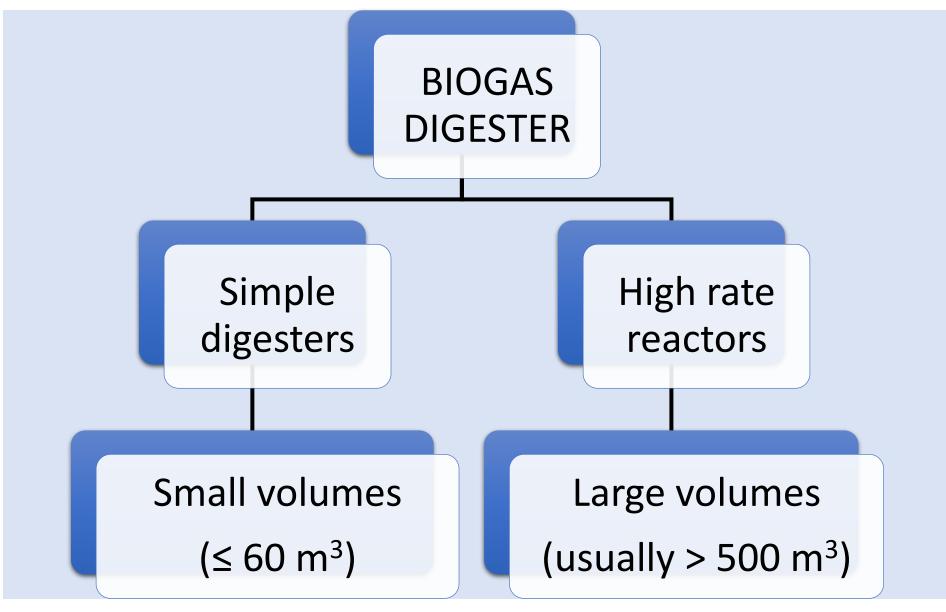
Principles of Anaerobic digestion

Principles of anaerobic digestion

Complex polymers (polysaccharides, proteins, etc) Pathways for biogas Mono and oligomers Propionate, butyrate, etc. production (sugars, amino acids, peptides) (long chain fatty acids) 2 $H_2 + CO_2$ Acetate CH₄, CO₂ Fermentative bacteria Obligate hydrogen-producing acetogenic bacteria 2. Hydrogen-oxidizing acetogens 3. Hydrogen-oxidizding methanogens Aceticlastic methanogens 5.

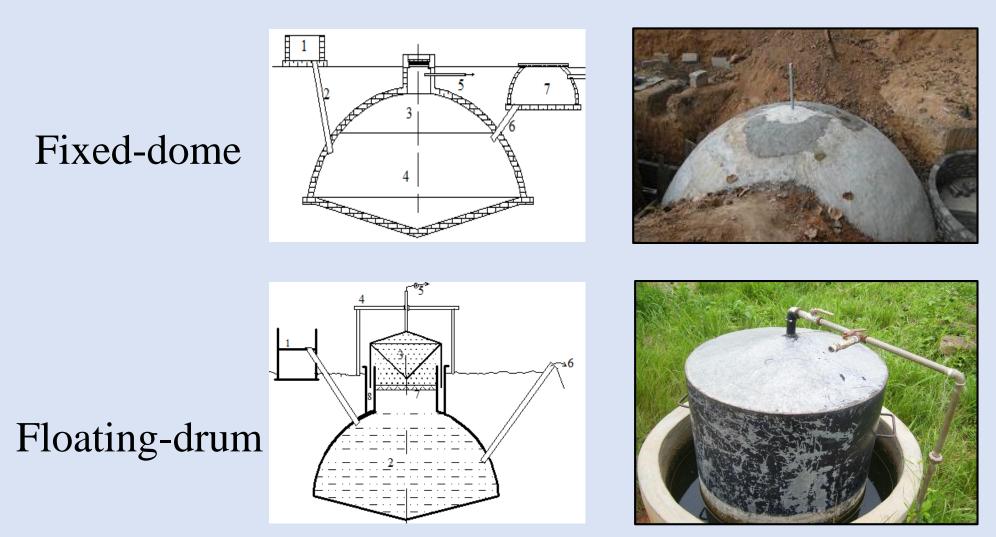
Nagamani and Ramasany, 2007

Edem C. Bensah – Kumasi Technical University; 29-30th


Digestion options: Wet or dry fermentation

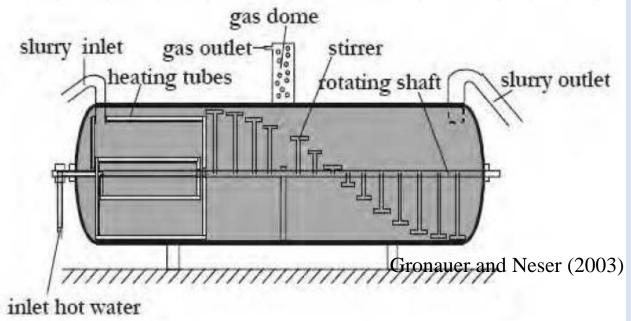
Parameter	Wet fermentation	Dry fermentation
Moisture content of	≥ 75%	< 25%
feed		
Pretreatment	Pretreatment of waste is done	No pre-treatment of waste is
	before waste enters digester	required.
Agitation	Usually required	Feed is stationary
Groundwater	High risk of groundwater	Low risk of groundwater
contamination	contamination	contamination
Biofertilizer	Higher storage demand	High cost of separation
		biofertilizer from inorganics
Suitability/applicability	Wastewater, organic wastes	Municipal solid waste (sorted or
	(homogenous or non-	unsorted)
	homogenous)	

Promising sectors for industrial biogas development


Animal farms	 Piggeries, poultry farms, cattle farms, etc.;
Edible oil extraction and processing	 Oil-palm, coconut, shea-nut, and groundnut
Crop processing	 Rice, cashew, cocoa, shea-nut, etc.
Fruits and vegetables processing companies	 Pineapples, oranges, mango, and pawpaw; etc.
Municipal waste	 Household, market, slaughterhouses, etc.
Industrial wastewater	 Beverage, rubber, pharmaceutical, etc.

The biogas digester

Edem C. Bensah – Kumasi Technical University; 29-30th January 2018

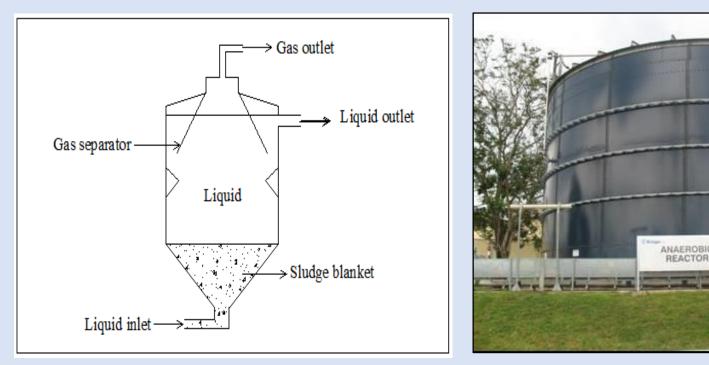

Simple digesters

Edem C. Bensah – Kumasi Technical University; 29-30th January 2018

Horizontal high rate digesters

Plug flow digester

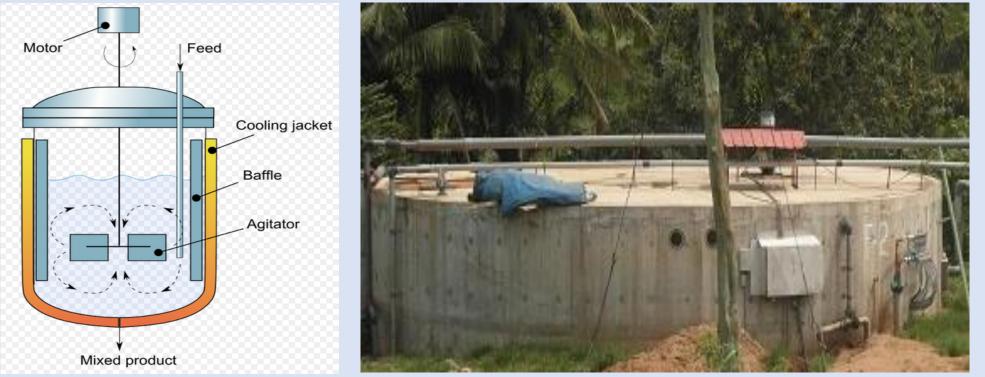
- Construction: concrete, steel, fiberglass, etc.
- May be heated and/or agitated


A: Plug flow digester in Princeton, Minnesota (Source: Rosalie)

B: Plug flow digester made of stainless steel (Krieg and Fische Ingenieure Germany)

Vertical high rate digesters

Upflow anaerobic sludge blanket (UASB)

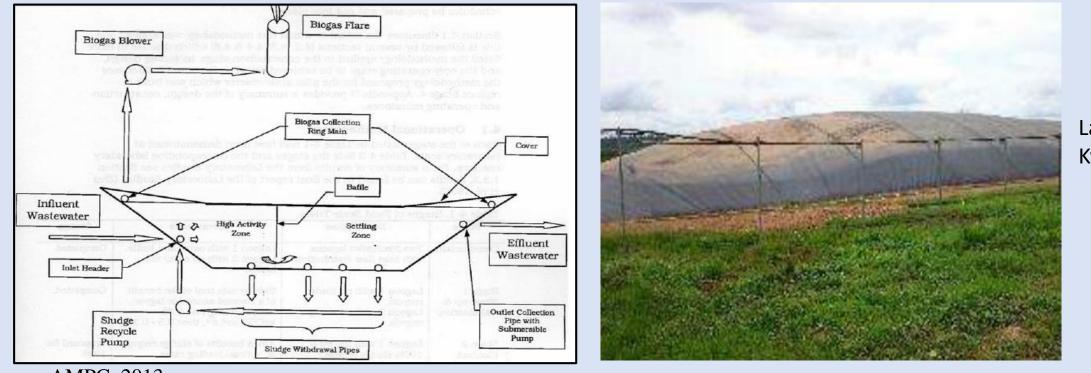


UASB, Guinness Ghana Ltd – Kumasi

- Contains immobilized bacteria (sludge blanket)
- Ideal for dilute wastewater

Vertical high rate digesters

Stirred tank (complete-mix) digester



Stirred-tank digester, HPW Fresh & Dry Ltd., Adeiso, Ghana

Ideal for wastewater with solids concentration of 3 to 10 %

Other high rate digesters

Covered anaerobic pond (The lagoon)

Lagoon, GOPDC, Kwae, Ghana

- AMPC, 2013
- Ideal for feed materials containing less than 2 % solids

Highlights of biogas sector in Ghana

- Number of plants installed was estimated at about 250 in 2008 and 400 in 2015
- About half of installed plants were not operating in 2008
- Biogas digesters installed are mainly fixed-dome for treating blackwater from households and institutions
- Current number unknown; Estimate by Ministry of Energy puts the number of functional plants at about 160
- Construction of plants dominated by unregistered artisans
- No clear policy on the sector though targets are set in REMP, SEForAll Action Plan, etc.
- Biogas Association of Ghana (BAG) formed in 2017 to promote advocacy

Key barriers to biogas development and growt Bioenergy for Ghana Seminar

- High investment cost (USD 235- 446 per cubic meter for simple plants)
- Absence of flexible financing schemes
- High operational cost of large (high rate) plants
- Low level of technical expertise
- High numbers of malfunctioning plants
- Weak regulation of sector (EPA, EC, etc.)
- Low knowledge level of industrial players on the energy and fertilizer potential of their waste
- Inadequate support from government
- Lack of efficient procedure for feeding biopower to grid and uncertainties on receiving payments from off-takers of power

HPW fresh and dry limited (Adeiso, Eastern Region)

Feedstock	About 10 tonnes/day of fruit waste	
Technology	Two STRs operating in series.	
Digester capacity, m3	900	
Operational temperature	Mesophilic	
Daily gas production	About 800-1000 m ³ of biogas (52 - 54% methane)	
Gas utilisation	Power production or process steam generation	
Challenges	Low power generation efficiency (9%) due to low	
	methane content. Digestate not fully utilised; farmers	
	not interested in slurry. Low digestion pH due to high	
	sugary feed; poor digestion efficiency; low gas yields;	
	low methane content.	
Possible solutions	Co-digestion with other waste such as poultry will	
	improve methane yield and fertilizer value. Education	
	and training of local farmers to use slurry in	
	agriculture	

A: Fresh fruit waste

C: Biogas gasholders

B: Two CSTRs in series

D: Gas generator

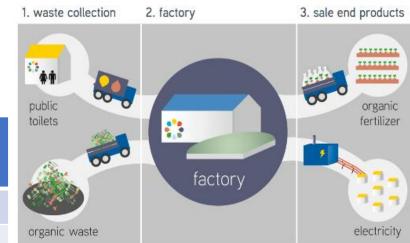
Kumasi abattoir, Kumasi

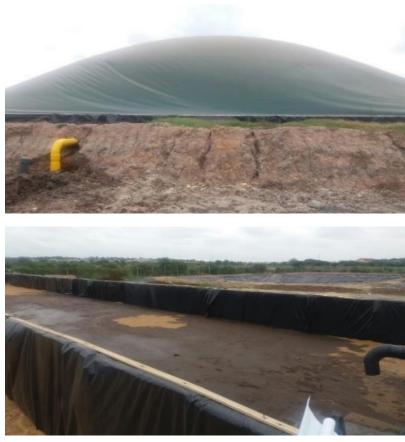
Company	Kumasi Abattoir Company Limited	A: Rumen content
Waste generation	About 21 tonnes of dung/intestinal contents; 180 m ³	
	wastewater daily.	
Technology	Stirred tank digester (under construction)	
Operational	Thermophilic	
temperature		C: Singeing using LPG
Daily gas	About 1000 m ³	C. Singeing using LFG
production		
Gas utilisation	Power production	and a sufficiency of
Challenges	Expected challenges relate the operation of the	And a second of the second second
	sophisticated system; technical challenges	and the second second
Possible solutions	Local engineers are expected to be trained on the	
	operation and management of the facility.	B: Final pond before discl

B: Final pond before discharge of effluent into public drain

Zoomlion wastewater treatment plants, Accra

Feedstock	2000 m ³ septage/day (Lavender Hill); 1000 m ³	
	septage/day (Kotoku); 1800 m ³ blackwater/day	
	(Mudor)	
Technology	UASB digesters	
Investment cost	USD 40 million (entire plant, Lavender Hill); 20	
	million (Mudor); 15 million (Kotoku)	
Gas utilisation	Expected to be used for electricity and heat	
Power output	Estimated at 400-500 kW (Lavender Hill)	
Use of electricity	To be internally used for plant operation	
and heat		
Digested slurry	To be post-treated, dried and used for	
	agricultural purposes	
Challenges	High investment and operational cost; low	
	revenue to defray investment cost	





Safi Sana biogas plant, Adjei-Kojo, Ashaiman

Feedstock	About 30 t/d of excreta, market waste,	
	agricultural residues, slaughterhouse waste, etc.	
Technology	CSTR (one stage)	
Investment cost	EUR 400,000 (digester and power systems)	
Operational	Thermophilic (40 - 45 °C)	
temperature		
Gas production	2000 m ³ /d	
Gas utilisation	Power generation	
Power output	100 kW	
Use of electricity	Electricity fed to the grid	
Heat use	Heating of digester	
Digested slurry	Post-treated using stabilisation ponds and drying	
	beds; for farming	
Challenges	Lack of source sourcing of waste demands	
	separation of waste which is time-consuming.	
	Inadequate supply of feed	

ACTIVITIES TO OVERCOME BARRIERS

- Awareness creation
- Exchange of knowledge and know-how
- Development of standardised plants (for fixed dome and other simple plants)
- Enforcement of regulations on discharge of wastewater
- Set-up of flexible financing mechanisms
- Streamlining of process for supply of small-scale power to grid

CONCLUSION: TRAINING REQUIREMENTS OF KEY ACTORS

Industrial actors	Biogas service providers	Knowledge based institutions
Estimation biogas energy potential	Design, development, construction and management of large scale biodigesters.	Modern biogas technologies and digesters
Basic financial and sensitivity analysis of their waste potential using simple software	Collaboration with leading global companies should emphasize training and skills transfer	